详细显示

基于GIS的河流水质动态监测系统

点击数:5468  发布时间:2011/12/13 16:41:46

         目前环保部门主要通过监测站点来采集数据,然后在监测中心通过水质模型对这些数据进行处理分析以达到对河流水质状况的监测。而这些站点分散度较大,所采集的河流水质数据比较片面,不能反映整个河流的水质状况;加上传送分析手段落后,监测的结果总是滞后于水质变化,不能及时反映河流水质的动态状况。因此研制一种能够实时反映河流水质的系统非常必要。

        随着计算机技术、通信技术和GIS(地理信息系统)技术的发展,使得研制这种系统成为可能。本文就是基于这些技术,提出一种基于GIS的河流水质动态的监测系统,这个系统能够及时反映水质的状况。系统的主要的特点是管理空间对象,能够将各种空间位置、空间分布以及空间关系通过数字地图显示出来

        整个系统由监测中心和数据采集终端两部分组成。监测中心是整个系统的服务器,运行GIS系统;数据采集终端即嵌入式系统,进行河流水质数据的实地采集。

        由于河流水质监测覆盖的范围广,GIS系统与数据采集终端之间通过TCP/IP进行互联通讯。数据采集终端通过TCP/IP来实现数据远距离的可靠传输,监测中心GIS接收所有终端采集的河流水质数据,对水质数据进行存储、分析、管理、查询和显示以及管理所有采集终端。

        利用GIS对河流水质数据进行存储、分析、模拟和显示,实现对河流水质的监测。整个系统由数据库、GIS可视化界面以及水质模型组成。

        GIS可视化界面直接管理空间对象,显示空间对象的空间位置、空间分布等空间属性,并通过关联空间属性来显示空间对象的非空间属性数据。这些空间属性和非空间属性分别以空间数据库和非空间数据库进行管理。空间数据库管理GIS的各种空间数据,包括地形图、各种专题地图,流域、嵌入式系统终端、污染源等对象的地理位置坐标、形状等。非空间属性数据库通过SQL数据库来实现,管理各种非空间属性数据,包括水质监测数据(如河流流量、流速、溶解氧DO等)、统计数据、社会属性数据(如经济状况、工业布局、水体水质标准等)等。

        GIS可视化界面通过数据库提供的各种标准数据库接口,读取数据库中的空间数据和非空间数据,并通过空间数据与非空间数据之间的关联作用,在GIS界面进行共同分析和显示等处理。同时,通过与数据库的相互作用,GIS实现了查询、定位、分析、模拟和预警等功能。

        水质模型是污染物在水环境中的变化规律及影响因素之间相互关系的数学描述,是水质监测的重要手段之一。今年来各种多变量综合水质模型得到研究和应用。

        水质模型非常细致地描述了污染物在水体中的迁移和转化过程,但参数众多,结构复杂。设计中根据实际的需要对综合水质模型进行一定的简化,实现了零维、多维水质模型和水环境容量模型。实际上水质模型处理的对象是流域,是空间对象,因此设计中将水质模型完全集成在GIS中,成为GIS的一部分功能。

        GIS能够直接利用水质模型对水质数据进行分析模拟,而模拟的结果可以直接在GIS可视化界面上显示;这样弥补了水质模型在表达方面的不足和GIS在分析模拟方面的不足.

   

        嵌入式系统的实现 嵌入式系统是以应用为中心,软件硬件可裁减的计算机系统,具有集成度高、成本低、支持各种实时操作系统以及网络功能等优点。 本设计中采用嵌入式系统进行野外水质数据采集,并通过TCP/TP将采集数据传送到监测。根据实现功能的不同,系统划分为处理器模块、存储模块、数据采集模块、网络模块和其他外设接口。

        所有其它模块的软件都在操作系统的基础上实现和运行,是具有不同的优先级的任务,任一时刻处于睡眠态、就绪态、运行态、等待态及中断态的状态之一。操作系统通过发送邮箱结构消息来控制各个模块状态。

        数据采集模块由各种传感器、数据采集任务以及数据处理任务构成,负责各种数据的采集和处理工作。水质监测中,传感器采集的数据主要是水质综合指标(如溶解氧DO)、水质污染指标(如生化需氧量BOD、化学需氧量COD)以及水文参数(流速和流量)。数据采集任务主要完成模拟量采集、模数转换以及数字量处理等功能。它通常处于等待状态,等待包含控制参数的消息。控制参数主要是采用频率、通道的选择以及启动模数转换器等。同时为数据采集任务设计一个4K容量的环型堆栈,用来暂时保存采样数据。

        数据处理任务大多时候处于空闲状态,具有与数据采集任务同样大小的堆栈,当需要立即传送数据时才被调用。

        水质动态监测的实现是通过TCP/IP将野外采集的水质数据实时传送到监测中心,监测中心将接收到的水质数据经过一定的分析处理后在GIS上显示,以达到动态监测的作用。

通常情况下数据采集任务处于睡眠延时等待状态,延时时间到数据采集任务被激活,进行一次数据采集并将数据保存在自己的堆栈中,完毕后重新进入睡眠等待状态。本设计中延时一次为10s,即10s采集一次。可以通过改变采集任务的延时时间来改变整个系统的采样频率。

        一次数据采集完毕后,对堆栈中的数据有两种处理方式,一种是立即传送方式,另一种是正常处理方式。

        立即传送方式主要监测污染事故对河流水质的影响。当出现严重污染事故时,需要及时快速的了解水质状况,监测中心通过网络向嵌入式采集终端发送一个立即传送命令,操作系统任务对命令进行处理判断后发消息激活数据处理任务,数据处理任务将采集任务堆栈中的数据读到自己的堆栈中,读完后清空采集任务堆栈并进入睡眠状态。接着操作系统任务发消息激活网络任务,网络任务将数据处理任务堆栈中的数据读到网卡缓冲区,读完后清空数据处理任务堆栈,TCP/IP开始发送数据。这种方式采集一次数据就传送一次,实时性好,但是占用太多的系统资源和网络资源。

        正常处理方式即按设计好的方式进行数据传送。一次采样完毕后,如果采样任务堆栈未满则继续下次采样,直到堆栈满。满后调用文件系统,将堆栈中的数据以文件形式存储在Flash中。且网络任务每隔2小时被击激活,将Flash中的数据读到网卡缓冲区,接着发送数据。这种方式避免了因过多的数据读写以及数据传送而占用系统资源。

        水质数据的动态显示就是对水质数据进行分析和处理后,在GIS可视化界面上动态显示。

        监测中心接收到水质数据后,GIS按一定的规则对数据进行验证,符合规则的有效数据存储到数据库中。可视化界面通过数据库API接口将存储的数据读出,进行汇总等处理;然后调用水质模型进行分析和模拟,并将分析模拟的结果以不同颜色动态显示在GIS可视化界面上。